Teacher 0:49
Okay. So we played LightBot yesterday, right? So when you played LightBot what did you do in your programs? What was the goal of each little level you played?

Student 2:11
Inaudible student response

Teacher 2:12
Light the squares, right? And so how did you accomplish that goal?

Student 2:17
[bookmark: _GoBack]Inaudible student response

Teacher 2:18
Right, you put the little squares together and that gave them directions to follow. So essentially what you were doing was creating algorithms for your LightBot to follow. So then an algorithm will just write down these definitions so you can come back to them later. You might want to write down the examples we talked about to they could be good reference. And the algorithm then it's just simply a sequence of steps to solve a problem.

So just like we just said, Every level you did, you had a problem to solve and you created an algorithm of the little blocks the sequences for your robot to follow. So we use it all the time in real life where we're following sequences and giving sequences of steps to other people. So common example is, if you're giving your friend directions to your house, you're giving them an algorithm to follow so that they can get to your house. Another example I like to use is a recipe. So you're following the recipe, which is the algorithm to create that specific type of food.

So when you played LightBot how many of you got into procedures yesterday?

Right, how many of you got into loops? After procedures? Alright, Everybody get them?

Good. Okay, so next is methods. So those of you that got two procedures, what did you do to make a procedure? How was it different than the levels before? You remember? [Pause for student responses]

 to go to the procedure, so we had like an extra little box to put more little blocks in, right? Why was that useful?

Student 4:27
It gives you more space.

Teacher 4:29
more space.

Student 4:30
Yeah, you can put multiple ones ... inaudible

Teacher 4:35
Okay, so tell me more about when you buy multiple ones.

Student 4:41
Like if you wanted it to turn and then walk forward and light up, you could use that same time instead of wasting three blocks,

Teacher 4:49
right. So you can put three blocks in your little procedure and one up in your main. So then a procedure is a method of the is our second term methods. So the sequence of steps that's used in many processes or repeated, and it's an encapsulated sequence of steps. So it has its own function, its own goal, it does what it needs to do. But it can be used now by calling it with one line, one word, one block, like the P1 in your procedures. So after we write this down, we'll go back and play the game. For those of you that didn't quite make it there. So an encapsulated sequence of steps. [Pause for students to write definition]

Using these makes our algorithms more efficient. So once you've got this one written down, you can go ahead and open LightBot on your computers again. And then we'll go into the procedures.

So if you've already played some of the procedures, you can just continue with them. But I'm just going to walk through what this is and why we might use a procedure together and then I'll let you play some too. [demos LightBot on the Smart Board] So this is the procedure the first level. So we're going to need more space than the main allows us. So we're going to add the proc one slot. Okay, so the P1 command, this little block here tells the main command when to go down and run the blocks that are in the proc one. So when it sees P1 here, it's going to run those blocks hits P1 and then does those P1 blocks and then it'll come right back up to the main and continue with the remaining blocks. So if we do this together, if we want to get down to our P1, we're just going to put P1 in the main, right? If we don't ever put the P1 block up there, it's never going to jump down and run what's in the procedure. So with procedures, we can kind of try and identify the steps that we might need to call more than once. So looking at this, we can kind of see a pattern, right? This side is the same as that side is the same as that side, right? So we might try just moving forward. Three, and then I light so let's see if that works. So now when it sees P1, it's going to jump down and run these blocks. Okay, good. So the next thing is probably in turn, right. Alright, so now we've got one side done, and we're ready to do the second side and then after that, we should be ready to do the third side. So that's the sequence that we be called three times to complete this. So now we can just put P1 or two more times.

Right, so just like we were talking about, now we've got 12345 blocks here that we would have had to put in our main program three times. So instead of putting 15 blocks in our main, which we don't have room for, now, we've put the five blocks here and our main program only has three blocks. So we have made this main program much more efficient. We don't have to spend as much time putting these blocks together because we can do it once and call it as many times whenever we need to. Okay, so go ahead and play a couple levels of this and then we'll come back and start some loops. [Pause for students to play the game]

We'll take a couple more minutes to finish the level you're on

Alright, so let's go ahead and play some loops. So we'll do that by pressing this back button twice. You should be back to this page, we'll click to the right. And we're going to play through the loops. So we'll start with the first one.

Alright, so looping, we're going to use the P1 command inside of the proc. So the very last block will be P1, and it's just going to repeat those steps. It's going to do them over and over and over. We only have one spot in our main, so the P1 has to go there. And so what are the two steps we would repeat to get this one done?

Student 12:31
Forward and light

Teacher 12:33
Forward and light?

and then so we know that that will work will try it. That's what we needed to do. Now we want to repeat that. So we're just going to add the P1 at the end that procedure. So now it's going to repeat, repeat, repeat, repeat, repeat, repeat until all the lights are lit, all the blocks are lit. Okay. So that's a loop, because she's repeating the sequence of steps until the blocks are lit. Okay, so go ahead and play a couple of those. And then we'll come back together and talk more about it. [Pause for students to play the game]

Make sure if you haven't played any of the loops that you're in level three so you can get some practice with them.

Alright, so finish up the one you're on, and then close your laptop, you can exit out. We'll be done with the laptops for today. We'll come back to our notes. [Pause for students to finish]

You can get LightBot as an app on your phone or your iPad or whatever. If you're like, I need more, or you, or if one level's really bothering you. I know I had trouble putting it down unitl I figured out the levels.

Right, did we get the definition of method down before we played? Alright, so in the game, the procedures you made the P1 and the proc one down below those were methods. So you call the method with the P1 block, and then you program out what the method was in the proc one in little block section down below. So in real life, I like to think of tying my shoes as a good example of a method. So when I say I'm going to tie my shoes, there's a whole sequence of steps that goes along with that, right? We all know what that is. So when I say in conversation i need to tie my shoe, that's all I need to say, because we all know what that means, right? I don't have to say I'm going to grab the left lace, I'm going to grab right lace, and I'm going to cross them. And then you know, I don't need to say all of that, right, I've been able to simplify what I need to say to you, because we all know what that method is. So if we were to try and make an algorithm and maybe for getting ready in the morning, [writes on the board]

right, this is our sequence of steps for what we might do in the morning to get ready. So I'm going to have some some steps here and eventually we're going to get to tie shoes. Right. So this algorithm here is equivalent to the main algorithm, the blocks they put in the main in your LightBot then when we get down to our time shoes, this is like the P1 block. So the tie shoes the title of that method. So here we're calling the method. So we'll just label it.

method call. Alright, so this is where we call the method. Now we're out And then once we get to this step, like humans, we know, we know what tire shoes means, right? But when we're creating algorithms, we have to assume whoever is using that algorithm maybe doesn't know. So we're going to now write out and program the method. So this is actually the method. Okay? So then we write out the steps, we grab the left lace, grab the right lace, right, and so on and so forth, until we've got our shoes tied. Right? So it doesn't really make sense to make methods all the time. If we're only going to use it in that one algorithm. In that one context. We don't really need to make a method. It's only useful if we need to repeat it within our algorithm, or we might use it in other algorithms. So we tie our shoes in the morning, but we might need to call this throughout the day if our shoes get untied. Right So that's why we make this method because if we have like our maybe, let's say, walking, this is another algorithm, right? Maybe you use this when you're changing classes or something, there's steps here, and then we're going to call tie shoes when we need to, right. And so now we've saved space and are getting ready to save space in our walking. And any other algorithm where we might need to call this method of tying our shoes. So that's an example and what the method might look like in written algorithms.

The next iteration, so this is the looping that you guys did in LightBot on that last level. So it's repeating a sequence of steps until and condition is met.

So how did we create a loop in LightBot? [Pause for student response]

What did we do to make a loop?

Student 20:18
Inaudible student response

Teacher 20:20
We put the P1 at the end of that procedure, right? So every time we get to that last block, it would just start over. It would repeat, repeat, repeat. So when we say until the condition is met, what condition were we trying to meet? When did it start in LightBot?

Student 20:37
When all the boxes were lit.

Teacher 20:38
When all the boxes were lit. Right, it's going to repeat P1, P1, P1 until all of the boxes are yellow. Right? So that's our game example. Then, in real life, we can kind of think of each day as an iteration, each week, each month, each year. Okay, so these might be a little bit different than the loops that we did in the game. Because these are not really going to stop, right? These are what we call infinite loops, or at least we hope their infinite right? We hope that there's going to be a tomorrow each day, right? So repeating, repeating, repeating. So this is an example of an infinite loop. What's an example of a loop In your real life where you might repeat steps until something else happened?

Student 21:23
School

Teacher 21:24
School? Ok, tell me more.

Student 21:27
You just keep going to classes until the bell rings

Teacher 21:30
Yeah, right. So you go to a class, the bell rings, go to the next class, the bell rings, you go next class until the end of the day. Right? So you're repeating those steps until the condition of the day is over is met. Right? Right. That's a good example. So if we were maybe to build in iteration into our getting ready algorithm, we generally do the same steps every day, right? At least during the week. So we can say Repeat until it's the weekend. [Writing on the whiteboard]

Right? So it's a little bit easier in our regular words, when we're just writing stuff, which is what we're going to do in the class, you don't have to worry about putting in the right block or anything like that you can express it in a lot of different ways. So this one, we can say, repeat until weekend, or we can do something else instead where we say, getting ready.

Right, so that's just like our P1 again, getting ready until weekend. Right, so that's one way that's another way you can even just draw an arrow and say until weekend. Right, so now we've got three different ways to kind of depict that iteration and that loop. This one physically looks like a loop. This one's just simply saying repeating until this happens a little bit more colloquial, more everyday language. And then this one is like the calling the P1. So you're calling this algorithm again, until that condition. Okay, so now we've got our method, and then we've got iterations here too. Right?

So next we have branching. So this wasn't part of the game, but it's still an important CT principle. And so branching is choosing a path. And so we use these as if, then, else statements.

So we use these all the time just when we're talking. Like if you haven't done your homework, then you're going to do that tonight, right? Use these conditional statements in regular everyday life. So like choosing what to wear each day, if it's cold outside, then I'm going to wear warm clothes, else, meaning it's not cold, I can wear cooler clothes. So we were to write this into our algorithm. We can say, if it's cold, right, then we can wear warm clothes. Else? So we physically have our branch, there's two different paths. Else we can wear cool clothes.

So we have a condition that we're checking. If it's cold, if that's true, then we do this. False? We do this. So we're checking condition and choosing two steps based on the outcome of that condition. So there we have our branching. [Writes on the whiteboard]

So next we have variables. So you've probably heard of variables in math, solve for x, right? You may have heard it in science even is dependent and independent variables with your experiments. But we're going to talk about it in terms of computational thinking as a value that can change. And so we use variables to make our algorithms universal or general. [Pause for students to write]

So if I'm wanted to create an algorithm that added five plus six, it's pretty easy, right? I say five. If I can write Six, five plus six equals right and then calculate five plus six, so that's great. I had my problem, I solved it was my algorithm, right? But, that is now only useful if I need to add only those two numbers five and six, right? So if I needed to add 10 and 11, I can't do that with this algorithm. But I can now rewrite this algorithm with variables and then I can use it for any two numbers. So I can say instead of five plus six, and they say variable one plus variable two equals Ok. So now I can say, when I need to use it all set variable one equal to whatever I need, and set variable two equal to whatever I need. So maybe in this case I do want to add 10 and 11. So now I can use it for any two numbers to add any two numbers together that the user can set. And if I wanted to make that even more generalizable, I can make this a variable too, okay, so variables don't have to be numbers, they can be equal to words that can be equal symbols that can be equal to sentences, we can really set them to whatever is that value that changes doesn't have to be a number. So here if I want to make this maybe command, instead of the plus sign, so now the user can then set command equal to whatever they want, right it can be plus it can be minus, it can be divide, and it can be multiply. So we had an algorithm that was good for only one purpose. Then we had an algorithm good for as many numbers as we need to do, but they can only be added and now we've got an algorithm that can be a lot of different things right? The any numbers, we can add, subtract, divide or multiply any two numbers. So it went from very, something very, very contextualize or something really specific, to something really, really general that we can use for a lot of different purposes.

So if we're looking at it are getting ready algorithm here. I think we've already got some variables built in. So what can you identify that might bea variable? What's the value that might change every day? And what we've gotten so far?

Student 28:37
Shoes

Teacher 28:37
Shoes, so the type of shoes we might wear might change. Okay, how do we decide what should we might wear?

Student 28:49
Depends on what you're doing.

Teacher 28:52
What you're doing? Okay,

Student 28:54
You're working in the shop, you don't want to wear flip flops. You might drop a hammer on your foot and it'll hurt more.

Teacher 29:00
right? Okay. So again, we might check using an if statement. We might check the whether, we might check if it matches what we're wearing the day, if it makes sense for what we're doing that day. So we can even tie in more branching statements to decide what the value of shoes would be that day.

What else? we have any other variables in there?

Student 29:22
Clothes.

Teacher 29:24
Clothes? Alright, so we have wear warm clothes and wear cool clothes. So if we wanted to really make these variables, we could instead of saying wear warm close, we can say set clothes equal to warm. Ok. So again, just a couple different ways to set that value of the variables, okay. So we'll just put squares around our variables here.

Right. So we've got variables, we just did. We've got our iteration with the repeating. We've got the call method, and the method actually written out over here. And then we've got our branching. In our getting ready algorithm.

Any questions on any of this stuff? Alright, cool. So what we're going to do is we're going to practice using some of these CT principles. So the whole point of this to get back to like real life and biology outside of LightBot is to create algorithms of processes. So we are going to practice this by having you in your partners where you're sitting, creating algorithms of your process for getting ready each day. So try and use branching iteration, methods and variables. When you use them, label them kind of like what we've done up, you can label them however you think it works best doesn't have to be the square on the variable. But as long as I know you're using a variable. Then we're going to take this father throughout the rest of the unit and you're going to start making algorithms for how antibiotic resistance occurs,and how maybe natural selection occurs too. Then we're going to get into applying it to the biology.

Any questions? Alright, so we'll get started creating your algorithms.

Transcribed by https://otter.ai
