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Text S3 

Analysis of Song Lyrics 

After obtaining the lyrics of the songs played in our study, we applied a text-mining 

pipeline to describe them in terms of objectively computed characteristics. We provide the 

full code for these analyses in our project repository under https://osf.io/x7dar/. 

First, we cleaned the lyrics from formatting issues (e.g., annotations like “chorus” or 

missing text repetitions indicated by “2x”). Then, we combined two language detection 

algorithms (Joulin et al., 2016; Lui, 2016) to create a variable indicating whether a song was 

in English, German, or another language. We filtered for English and German lyrics (96 % of 

all songs), which were most likely understood by our German student sample, to ensure that 

our variables reflected conscious lyrics preferences. Finally, to enable natural language 

modeling, we translated German lyrics into English using the neural-network-based 

translation software DeepL (DeepL GmbH, n.d.). We describe the lyrics preprocessing in 

greater detail in our repository. 

Next, we applied different natural language models, including Latent Dirichlet 

Allocation (LDA). We trained and evaluated LDA models on a separate corpus of over 

180.000 lyrics from the Million Song Dataset (MSD; Bertin-Mahieux et al., 2011) to avoid 

overfitting the topic distributions to sample-specific patterns. After preprocessing the MSD 

corpus in parallel to our original lyrics file (s. details in the repository), we fit 12 topic models 

differing in the choice of priors and the number of topics. We tested a fixed default value of 

.01 for the priors alpha and beta against an optimization of the prior alpha that allows some 

topics to be more prominent than others. These two settings were paired with six choices for 

the number of topics: 15, 30, 50, 60, 75, 120. We evaluated the resulting models and chose 

the winner settings such that the topic coherence measure u_mass was maximized (Rehurek & 

Sojka, 2010). The winner model with fixed priors and 30 topics (s., Table S3) served to infer 
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topic distributions on our initial lyrics corpus. In Table S4, we provide the keywords for the 

final topic solution.  

Another language model we applied to our lyrics corpus was a pre-trained 

implementation of Bidirectional Encoder Representations from Transformers (BERT) by 

Wolf et al. (2020). BERT provided one embedding vector for each word in a song’s lyrics, 

plus one additional [CLS]-token embedding, which we used as a condensed numerical 

representation of the entire lyrics. However, 10% of our lyrics exceeded BERT’s maximum 

input of 512 words per sequence, so we developed a cutting heuristic. When the excess words 

made up less than half of a song’s lyrics, we followed the standard procedure to cut off the 

lyrics’ tail which often contained fade-outs or chorus repetitions. In the remaining cases, we 

parsed the lyrics into multiple chunks, extracted separate embedding vectors for each chunk, 

and averaged them later. 

The reproducible code for all lyrics analyses is available in our online repository. 

Single functions have been adapted from other authors and highlighted within the code for 

lyrics preprocessing (McKew, 2020), LDA modeling (Konrad, 2016), and song-level variable 

extraction (Bertin-Mahieux, 2011; The Hugging Face Team, 2020). 
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