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FIGURES  

Figure A1.  Stratospheric zonal mean O3 abundance (ppm) averaged over four seasons (DJF, MAM, JJA, 
SON) comprised of 5-day snapshots from year 2003 of the CTRL run.  Coordinates are latitude by 
pressure altitude z* = 16 km log10(1/P(bars)) and assume a surface pressure everywhere of 1 bar.   

Figure A2.  Tropospheric zonal mean O3 abundance (ppb), see Fig. A1.  Some pixels in Fig. A1 and A2 
contain both stratospheric and tropospheric values because the pixel contained was both stratospheric and 
tropospheric air over the 18 snapshots and 320 longitude cells (e.g., stratospheric intrusions).   

Figure A3.  Stratospheric (top) and tropospheric (bottom) global mean O3 columns (DU) from the CTRL 
run calculated from the 365 5-day snapshots over the five years, 2000 through 2004.  

Figure A4.  Perturbation in the O3 column (DU) for eO3avi (top), eO3srf (middle), and eO3ste1 (bottom), 
separating troposphere (blue) from stratosphere (red). Also shown are the decay of the perturbations 
following cessation of emissions on July 1 (2003.5) and Jan 1 (2004.0).  In terms of DU, the annual 
emissions 100 Tg-O3/y = 9.2 DU/y, and thus a tropospheric perturbation of 0.5 DU has a lifetime of 20 
days. 

Figure A5.  eO3avi perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, JJA, 
SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see Figure 
A1.  Aviation emissions (eO3avi) occur mostly in the northern troposphere but reach into the stratosphere 
and southern hemisphere. Note that color bars have the same range on all plots. 

Figure A6.  eNOavi perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, JJA, 
SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see Figure 
A1.  For eNOavi, aviation emissions of NOx are doubled.  Note that color bars have the same range on all 
plots. 

Figure A7.  eO3srf perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, JJA, 
SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see Figure 
A1.  Surface emissions (eO3srf) occur within the black square over a limited longitude range, see Table 1.   

Figure A8.  eO3ste1 perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, JJA, 
SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see Figure 
A1.  STE emissions (eO3ste1) occur within the black squares equally in each hemisphere and across all 
longitudes, see Table 1. 
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Figure A9.  eO3ste2 perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, JJA, 
SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see Figure 
A1.  STE emissions (eO3ste2) occur within the black squares equally in each hemisphere and across all 
longitudes, see Table 1.   

Figure A10.  Stratospheric (top) and tropospheric (bottom) O3 column (DU) for year 2003 from the 
control (CTRL) simulation.  Columns are a function of latitude and time at 5-day intervals. 

Figure A11.  Ozone column perturbation (DU) for experiment eO3avi (aviation O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 

Figure A12.  Ozone column perturbation (DU) for experiment eNOavi (aviation NOx) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 

Figure A13.  Ozone column perturbation (DU) for experiment eO3srf (surface O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 

Figure A14.  Ozone column perturbation (DU) for experiment eO3ste1 (STE O3) as a function of latitude 
and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 

Figure A15.  Ozone column perturbation (DU) for experiment eO3ste2 (STE O3) as a function of latitude 
and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 

Figure A16. Total (top) and tropospheric (bottom) burden of excess O3 (Tg) for the five experiments, 
showing 5-day intervals for years 2000 through 2003.  The spin up in early 2000 is clearly visible. The 
lifetime scale (days, right axis) is calculated from the emission rate of 100 Tg-O3 yr-1 for both 
tropospheric and total burden, and it does not apply to eNOavi (EO3B).    

Figure A17.  Burden of excess O3 (Tg) for the five experiments: eO3avi (EO3A), eNOavi (EO3B), 
eO3ste1 (EO3T), eO3ste2 (EO3U), and eO3srf (EO3S).  For each experiment, the tropospheric (dashed 
line), stratospheric (dotted line) and total (solid line) are shown.  See Figure A16.  

Figure A18.  Instantaneous patterns of NH tropospheric O3 perturbation for eO3avi/srf/ste1 at 1 Jul 2003 
and 1 Jan 2004. All patterns are scaled to a total of 5 Tg.   

Figure A19.  (top) Decay of northern hemisphere tropospheric O3 perturbations for eO3avi/srf/ste1 
rescaled to 1 at the time of cessation of emission on July 1 (left) and January 1 (right).  Dashed black lines 
are the same in both panels and show a constant decay of 10- (steepest), 20-, 30- and 40-day e-folds.  The 
legend gives the min-to-max range in steady-state lifetime.  Months are marked with vertical lines.  
(bottom) Same plot for southern hemisphere tropospheric O3.   

Figure A20.  Chemical mode patterns for the troposphere following decay of eO3avi/srf/ste1 starting at 1 
Jul 2003 and 1 Jan 2004.  Modes are calculated from averaged NH patterns after 1-2 months of decay 
(days 30-85).  All perturbations are scaled to a total NH tropospheric O3 perturbation of 5 Tg.   

Figure A21.  Latitude-by-altitude plots of the perturbations to key chemical species for the eO3avi 
(aviation) vs. CTRL on 1 Jul 2003.  The upper-left-corner panel shows the O3 perturbation in ppb to 
compare with earlier figures.  All other panels, including the 2nd O3 panel are in % difference.  Note that 
the color bar, -3% to +3%, is the same for all the relative change panels. 
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Table A1.  Chemistry and Transport in the UCI CTM 
Tropospheric Chemical Species 
O(1D)* OH^ O3 HO2 NO NO2 NO3 N2O5 
HNO3 HNO4 H2O2 CH3OO CH3OOH H2CO C2H5OO C2H5OOH 
C2H4O C2H3O3 PAN Alkene Alkane# C2H6

# CH4
# CO# 

H2
# C5H8 C4H6O C5H7O2^ C4H5O3^ ROHO2^ C3H6O& H2O& 

e90%        
All species included as implicit chemistry and transport EXCEPT:  * = instant steady state; ^ = transported with 
+parent molecule (see below); # = explicit chemistry; & = specified abundance; % = no chemistry, 90-day e-fold. 
Key:  C2H4O =Acetaldehyde; C2H3O3 = Peroxyacetyl radical; PAN = C2H3O3NO2 = Peroxyacetyl nitrate; Alkene 
= C3H6 + other alkene emissions; Alkane = C3H8 + higher alkane emissions; C5H8 = Isoprene; C4H6O = 
Methacrolein or Methyl vinyl ketone; C5H7O2 = Isoprene peroxy radical (all types); C4H5O3 = Methyl vinyl 
ketone peroxy radicals (all types);  ROHO2 = C3H7O3 = Hydroxypropanyl peroxy radical formed from Alkene + 
OH; C3H6O = Acetone. 
Transported pairs, for the chemistry initialize:  OH as 1% of HO2; ROHO2 as 0.1% of Alkene; C5H7O2 as 0.1% of 
C5H8; C4H5O3 as 0.1% of C4H6O. 
Stratospheric Chemical Species 
O3 N2O CH4 NOY     
Notes: NOY = NO + NO2 + NO3 + 2 N2O5 + HNO3 + HNO4 + PAN 
Tracer Transport 
source ECMWF IFS cycle 38r1 3-hr averaged forecasts (winds, convection, temperature, q, rain, clouds) 
resolution native resolution T159L60 (1.1° x 1.1°, 34 layers in troposphere) 
numerics second-order moments for tracers, fractional overlap for clouds and washout, explicit STE fluxes 

 
Table A2.  Emissions & Boundary Conditions 

Species Tg-species per year Notes 
NO 88.2 + 10.7 Lightning NOx tuned to 5 TgN = 10.7 TgNO as multi-year average 
NO2 0.1  
H2CO 14.4  
CO 1274.4  
C2H6 7.8  
C2H4O 23.5  
Alkane 49.1  
Alkene 66.9  
Isoprene 523.4  
e90 2073.8 Globally uniform surface, tuned to give 100 ppb at steady state 

 
Emission Source Reference Species 
Anthropogenic surface RCP 6.0 year 2000 NO, CO, C2H6, Alkane, Alkene, H2CO, C2H4O 
Aviation NOx RCP 6.0 year 2000 NO (96%), NO2 (4%) 
Biomass burning GFED4 year 1997 NO, CO, C2H6, Alkane, Alkene, H2CO, C2H4O 
Biogenics MEGAN 2.1 CO, Alkene, H2CO, C2H4O, C5H8 
Lightning NOx Holmes++ 2013, 2104 NO 

 
Species Fixed abundance Notes 
CH4 LBC:  SH-NH = 1750-1850 ppb  
N2O LBC:  SH-NH = 316-316 ppb  
H2 LBC:  SH-NH = 550-500 ppb  
C3H6O All trop:  90S-60S-30S-20S-20N-30N-60N-90N 

 =         150-250-350-500-700-900-700 ppt 
From ATom, uniform in vertical  
= 200-200-200-400-600-600-600 ppt 
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Table A3.  UCI CTM References documenting application and development of UCI CTM and its 
components. This chemistry-transport model began as a Harvard & GISS joint enterprise, and then moved 
to UC Irvine.  The meteorological fields used in the CTM were originally from the GISS GCM developed 
by Gary Russell (11-layer tropospheric model and 21-layer stratospheric model).  In the late 1990s Jostein 
Sundet visited UCI and developed the next generation of meteorological fields based on the ECMWF IFS 
that U. Oslo had access to.  The tropospheric chemistry was initially built by Oliver Wild while at 
FRSGC Yokohama and thus also known as FRSGC CTM.  After 1992, most all of the lead authors on 
these papers were graduate students, post-docs, or visitors in the Earth System Science Department at UC 
Irvine. 
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Figure A1.  Stratospheric zonal mean O3 abundance (ppm) averaged over four seasons (DJF, MAM, 
JJA, SON) comprised of 5-day snapshots from year 2003 of the CTRL run.  Coordinates are latitude by 
pressure altitude z* = 16 km log10(1/P(bars)) and assume a surface pressure everywhere of 1 bar.   

  

  

Figure A2.  Tropospheric zonal mean O3 abundance (ppb), see Fig. A1.  Some pixels in Fig. A1 and 
A2 contain both stratospheric and tropospheric values because the pixel contained was both stratospheric 
and tropospheric air over the 18 snapshots and 320 longitude cells (e.g., stratospheric intrusions).   
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Figure A3.  Stratospheric (top) and tropospheric (bottom) global mean O3 columns (DU) from the 
CTRL run calculated from the 365 5-day snapshots over the five years, 2000 through 2004.  
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Figure A4.  Perturbation in the O3 column (DU) for eO3avi (EO3A, top), eO3srf (EO3S, middle), 
and eO3ste1 (EO3T, bottom), separating troposphere (blue) from stratosphere (red). Also shown are the 
decay of the perturbations following cessation of emissions on July 1 (2003.5) and Jan 1 (2004.0).  In 
terms of DU, the annual emissions are about 9.2 DU, and thus a tropospheric perturbation of 0.4 DU has a 
lifetime of 16 days. 
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Figure A5.  eO3avi perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, 
JJA, SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see 
Figure A1.  Aviation emissions (eO3avi) occur mostly in the northern troposphere but reach into the 
stratosphere and southern hemisphere.  Note that color bars have the same range on all plots. 



Page 12 of 27 Appendix: Lifetimes and timescales of tropospheric O3 
 

eNOavi (EO3B) 

  

  

 

  

  

 

Figure A6.  eNOavi perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, 
JJA, SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see 
Figure A1.  Aviation emissions (eNOavi) occur as NOx.  Note that color bars have the same range on all 
plots. 
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Figure A7.  eO3srf perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, 
JJA, SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see 
Figure A1.  Surface emissions (eO3srf) occur within the black square over a limited longitude range, see 
Table 1.   
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Figure A8.  eO3ste1 perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, 
JJA, SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see 
Figure A1.  STE emissions (eO3ste1) occur within the black squares equally in each hemisphere and 
across all longitudes, see Table 1.   
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Figure A9.  eO3ste2 perturbation to zonal mean O3 abundance (ppb) for four seasons (DJF, MAM, 
JJA, SON), split into stratospheric (top panels) and tropospheric (bottom panels). For methodology, see 
Figure A1.  STE emissions (eO3ste2) occur within the black squares equally in each hemisphere and 
across all longitudes, see Table 1.   
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Figure A10.  Stratospheric (top) and tropospheric (bottom) O3 column (DU) for year 2003 from the 
control (CTRL) simulation.  Columns are a function of latitude and time at 5-day intervals. 
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Figure A11.  Ozone column perturbation (DU) for experiment eO3avi (aviation O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 
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Figure A12.  Ozone column perturbation (DU) for experiment eNOavi (aviation NOx)  as a function 
of latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere 
(bottom).  
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Figure A13.  Ozone column perturbation (DU) for experiment eO3srf (surface O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 
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Figure A14.  Ozone column perturbation (DU) for experiment eO3ste1 (1st STE O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 
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Figure A15.  Ozone column perturbation (DU) for experiment eO3ste2 (2nd STE O3) as a function of 
latitude and time (2000.0 to 2004.0) at 5-day intervals for stratosphere (top) and troposphere (bottom). 
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Figure A16. Total (top) and tropospheric (bottom) burden of excess O3 (Tg) for the five 
experiments, showing 5-day intervals for years 2000 through 2003.  The spin up in early 2000 is clearly 
visible. The lifetime scale (days, right axis) is calculated from the emission rate of 100 Tg-O3 yr-1 for both 
tropospheric and total burden, and it does not apply to eNOavi.  The legend notation is: EO3A = eO3avi; 
EO3S = eO3srf; EO3T = eO3ste1; EO3U = eO3ste2; EO3B = eNOavi..    
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Figure A17.  Burden of excess O3 (Tg) for the five experiments. For each experiment, the tropospheric 
(dashed line), stratospheric (dotted line) and total (solid line) are shown.  See Figure A16. The y-axis 
notation is: EO3A = eO3avi; EO3S = eO3srf; EO3T = eO3ste1; EO3U = eO3ste2; EO3B = eNOavi; 
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Figure 18.  Instantaneous patterns of NH tropospheric O3 perturbation for eO3avi/srf/ste1 at 1 Jul 
2003 and 1 Jan 2004. All patterns are scaled to a total of 5 Tg.  Figure titles: EO3A = eO3avi; EO3S = 
eO3srf; EO3T = eO3ste1. 
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Figure A19.  (top) Decay of northern hemisphere tropospheric O3 perturbations (Tg) for 
eO3avi/srf/ste1 rescaled to 1 at the time of cessation of emissions on July 1 (left) and January 1 (right).  
Dashed black lines are the same in both panels and show a constant decay of 10- (steepest), 20-, 30- and 
40-day e-folds.  The legend gives the min-to-max range in steady-state lifetime.  Months are marked with 
vertical lines.  (bottom) Same plot for southern hemisphere tropospheric O3.  The legend notation is: 
EO3A = eO3avi; EO3S = eO3srf; EO3T = eO3ste1. 
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Figure A20.  Chemical mode patterns for the troposphere following decay of eO3avi/srf/ste1 starting 
at 1 Jul 2003 and 1 Jan 2004.  Modes are calculated from averaged NH patterns after 1-2 months decay 
(days 30-85).  All perturbations are scaled to a total NH tropospheric O3 perturbation of 5 Tg.     



Page 27 of 27 Appendix: Lifetimes and timescales of tropospheric O3 
 

 

 

Figure A21.  Latitude-by-altitude plots of the perturbations to key chemical species for the eO3avi 
(aviation) vs. CTRL on 1 Jul 2003.  The upper-left-corner panel shows the O3 perturbation in ppb to 
compare with earlier figures.  All other panels, including the 2nd O3 panel are in % difference.  Note that 
the color bar, -3% to +3%, is the same for the eleven relative change panels. 

 


