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S1. Field campaign routes 

Lloydminster   Peace River 

Medicine Hat 

Figure S1. Field campaign routes. Predominant geological formations within the region are shown. Yellow 

symbols represent oil and gas infrastructure – only those that lie within the highlighted formations are shown. 

Survey routes are depicted in black.  
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S2. eCO2:eCH4 ratio 

Kernel density plots (Figure S2) compare the deviation in excess CO2 to CH4 from natural background 

levels. Each density plot contains an aggregate of data from all 15 surveys within a campaign. Assuming 

there is no significant venting or fugitives of CO2 in these developments, this gas ratio is an indicator of 

methane excursion severity. Each plot contains a peak in eCO2:eCH4 signatures around 215, which 

represents the natural, ambient background (CO2 ~400 ppm, CH4 ~ 1.86 ppm). The peak to the left in each 

plot implies a population of eCO2:eCH4 signatures that are numerically smaller than the natural background, 

indicating a density of methane enriched anomalies, originating from localized oil and gas development. 

For instance, peaks <60 indicate an enriched CH4 signature roughly 3.5 times that of the natural atmosphere. 

The eCO2:eCH4. ratio is our primary tool for identifying and classifying  plumes, and the excess eCO2:eCH4 

ratio specific to each campaign, presented in the methodology section, was inferred from these peaks. 

Lloydminster surveys show the greatest density of depressed ratios, indicating CH4 enrichment is 

predominant in this development over its comparators. A control route conducted in Weyburn, SK during 

a fall 2016 mobile survey campaign with the same set-up and methodology is shown as a comparison 

against the other regions, which unlike the other routes, was conducted in a rural region lacking oil and gas 

development. Methane-enriched peaks are visible to the left of the natural ratio on all routes except for the 

Control, where no anomalous plumes from energy development were detected. The only peak observed in 

the control is related to the ambient background.    

 

 

 

 

Figure S2. eCO2:eCH4 Kernel Density plots of excess mole fraction ratios.   
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S3. Emissions Rate Uncertainty Analysis  

S3.1 Minimum and Upper Detection Limits, and Dynamic Range 

To estimate our lowest detection threshold, we estimated an overall emissions rate Minimum 

Detection Limit (MDL) for each development using the 5th percentile of excess methane enhancements for 

attributed plumes and a source height of 1 m as input parameters in the Gaussian Dispersion Model (GDM). 

The MDL is empirically derived in this way because it depends on several factors including; variability or 

noise in background methane; atmospheric stability at the time of surveying; our ability to repeatedly 

observe small enhancements; and detection distance. Since the MDL is based on a lower 5 th percentile of 

methane enhancements within a development, there were a few individual cases in which we could achieve 

a lower MDL, generally where we found ourselves in close-up downwind proximity to emitting well pads.  

There was no Upper Detection Limit (UDL) in this study, as all methane enhancements were below the 

maximal capabilities of our gas analyzers. Since the range of emissions rate estimates in the whole study 

was 0.840 m3day-1 to 4850 m3day-1, the leveraged dynamic range of the mobile measurement approach was 

nearly 4 orders of magnitude.    

 

 

S3.2 Emissions Rate Estimate Uncertainty at Individual Well Pads 

 

There are several sources of emissions rate uncertainty that should be considered in this study 

including a) methodological uncertainty, b) GDM field data parameterization uncertainty, and c) other 

considerations such as the impact of field obstructions. We expand on these below.  

 

a)  Methodological Uncertainty 

 

The dimensions and mole fraction profile of a methane plume will differ over the course of time 

due to short term variations in atmospheric turbulence. Traditionally, the GDM describes the ensemble 

average (generally at minimum, several minutes long) of atmospheric mole fractions downwind of a point 

source to account for this variation. As explained below, we account for the lack of stationary time 

averaging by considering spatially integrated mole fractions recorded during transects.  

Transect-based mobile dispersion studies (Caulton et al., 2017; Rella et al., 2015; Yacovitch et al., 

2015) often involve integrating observed mole fraction enhancements across the entire plume width.  This 

is suitable so long as certain conditions can be satisfied, such as the emission source height being within 

range of the sampling inlet height, signal to noise from the background is sufficient to fully resolve the 

plume edges, and the transect is perpendicular downwind of the plume. The plume centreline GDM 

approach used in this study is a useful alternative when such conditions can't be guaranteed.   

Studies that use mobile measurement with GDM centreline values normally employ a temporally-

averaged centreline measurement over a defined time interval, generally in the range of 10-20 minutes. 

(Lan et al., 2015; Brantley et al., 2014; Thoma et al., 2012; Foster-Wittig et al., 2015). Relative to the 

Gaussian distribution of methane enhancements, the instantaneous plume can be narrow, can meander 

temporally, and can be enriched. If discrete point samples were acquired across the plume, as would be the 
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case when using an open-path sensor as in Caulton et al. (2017), we would expect to fully resolve the narrow 

and enriched instantaneous centerline.  GDM estimates using this centreline mole fraction enhancement 

would need to be corrected according Turner (1994) power law relating instantaneous enhancements to 

those of the spatially-broader Gaussian enhancements. An alternative approach involves averaging the 

instantaneous discrete values in a way that develops greater equivalence to the GDM principles of time 

averaging. 

Line-integration (or spatial integration) is another approach applicable to centreline GDM and is 

characteristic of the pumped and closed-cavity gas measurement systems used in our study.  Since we were 

continuously drawing air into the inlet tubing and analyzer cavity whilst moving, the mole fraction 

enhancements recorded in this study represent line-integrated values.  We typically bisected plumes at 30-

60 kmhr-1, or 8-17 ms-1, therefore each individual datapoint is integrated across 8-17 m. Analyzer dilution 

corrections described in the methods section do not correct for line integration. The effect of line integration 

can be contextualized using a simple example. At a detection distance of 125 m and under Pasquill stability 

classes C and D, the full width of a theoretical Gaussian plume is about 90 m from fringe to fringe, and 

68% of its mass lies  15.6 m of centreline (over a 10-20 min idealized timeframe).  The instantaneous 

plume will be narrower but of an unknown width.  In our example, each of our 8-17 m line-integrated 

samples across this plume integrates across ~6% to 14% of the full plume width, or at centreline, across 

28% to 56% of the Gaussian spread in plume mass. This is a straightforward space-for-time averaging 

substitution. A reader drawing an imaginary horizontal line across this part of a standard normal distribution 

will realize that inferred centreline values should fall slightly below the true Gaussian peak centreline value, 

which could result in a downward bias in estimated emissions once the GDM is applied. It will be prone to 

further under-estimation if moving very quickly through plumes at high proximity to emission sources. 

However, such effects do not generate noticeable additional bias in controlled releases at these working 

distances and speeds, relative to the variability between individual replicate estimates.  

Using the same detection and attribution procedure as the field observations in this study, we 

computed methodological uncertainties using data from a controlled release experiment conducted over 

five days at the CMC Research Institutes Field Research Station near Brooks, AB. Under Pasquill 

atmospheric stability classes C-D, and wind speeds ranging between 1.8-29 km/hr ( = 8.7 km/hr), the 

controlled releases were conducted under conditions representative of our measurement campaigns. The 

GDM was parameterized using field-derived parameters measured onsite with the same equipment as in 

this study with the exception of the wind measurements, which were acquired using a stationary 

anemometer collecting one-minute wind speed and direction averages. The controlled releases involved 

each a 1.35 m and 3.55 m high fuel natural gas (99% CH4) release in a flat, open area. Downwind passes 

were conducted during a set flow release rate of 21.9 m3d-1, at distances ranging from 7 m to 300 m. We 

measured a total of 107 plume transects that exceeded our MDL. To compute standard errors (SE) and 

estimate bias from these releases that would be representative of field practice where we generally pass 

infrastructure 3 times, we randomly subsampled trios of values from the measured volumetric distribution 

using a bootstrap method (Davison and Hinkley, 1997), then computed the SEs and bias for each triplicate 

measurement. We repeated this subsampling 1000x in a loop. Average standard error and bias for a triplicate 

pass campaign was determined by averaging the outputs from 20 loops (total n=20,000). From this analysis, 

the ratio of the measured rate relative to the set release rate was 1.30 for the mean of triplicate 

measurements, and 0.82 for the median of triplicate measurements, meaning the mobile methodology has 

a bias of +30% to -18%, at this set flow rate, depending on the statistical metric used to interpret repeats. 

In this experiment, the majority (74/107) of plume emission rate estimates fell below the known release 
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rate.  The distribution of the data is presented in Figure S3, showing a general tendency to underestimate, 

but where infrequent outlier overestimates inflate the mean. Although averaging replicate passes could bias 

emissions upwards, underestimation is more probable. In our study, we present the mean of repeat 

measurements because the median will more clearly result in an underestimation. Despite differences at the 

controlled release level, both mean and median techniques provide comparable results, except in Peace 

River where variance between individual plumes over multiple passes tended to be higher, and where 

median rates resulted in a more significant decrease in interpreted emissions rates. The interpreted 

emissions rates per development (derived using mean and median rates per well pad, respectively) are: 

Lloydminster 249 and 217 m3d-1; Peace River 158 and 96.1 m3d-1, Medicine Hat 40.6 and 37.4 m3d-1. Both 

mean and median rates per well pad are presented in Dataset S2.  

 

 

Average SE as a percentage of the measured release rate for n=3, was found to be 63.3%. This error 

estimate is in-line with other transect-based GDM studies such as Day et al. (2014) and Feitz et al. (2017) 

both of which show that estimates from several traverses during a controlled release experiment are 

generally within 30-50% of the actual release rate, though there was often substantial variation between the 

individual traverse results. The EPA OTM 33A method, not transect-based, used controlled release data to 

determine errors of ±60% (Brantley et al., 2014). 

Figure S3. Kernel density plot showing bootstrapped results (n=20,000) of the average measured/set 

release rate for a population of three measurements. A ratio of 1 on the X axis, shown by red, signifies 

where the measured release rate = the set release rate. The average measured/set release rate of 1.3 for this 

study is in blue. The average median of 0.82 is in green.  
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Averaging is an important driver of  GDM uncertainty, as discussed in Caulton et al. (2017) and 

Fritz et al. (2005). Caulton et al. (2017) suggests that uncertainty is significantly lowered if enough transects 

are considered in the average emissions rate (suggested  10).  Volumetric emission rates presented in this 

study were the result of 1-7 downwind transect passes.   

Overall there is a recognized high uncertainty in GDM, established under many different use cases, 

and using different approaches to GDM.  Yet in a study where the largest measured emission rate was 

nearly 200,000% that of the smallest, uncertainties of for example  100% still result in a good signal to 

noise ratio. We can be confident in our ability to reliably discriminate normal, or below regulatory 

emissions, from extreme regulatory exceedances that are orders of magnitude larger.  In our study, 

emissions source height (discussed below) is likely a more important driver of uncertainty than absolute 

methodological uncertainty. 

 

b) Field data parameterization uncertainty 

 

A GDM is sensitive to the quality of input parameters including Pasquill class, source emissions 

height (h), windspeed (u), and errors in computing downwind distance (d).  For the purposes of evaluating 

uncertainty, we sought to establish the sensitivity of GDM outputs to field conditions experienced in this 

study, and not simply in an artificial controlled release study.  To do so, we evaluated GDM output 

variability based on iteratively varying input parameters within field-representative values for windspeed 

(Pasquill stability class C, 4  25% in ms-1), stack height (1-10 m), and distance (80m  25%). We chose 

not to test the Pasquill model, as the majority of our surveys were conducted under class C, with which we 

conducted these sensitivity simulations. For windspeed and distance errors, the GDM output varied by 

maximally a few tens of percent.  For emissions height, the estimates varied by up to ~200% if we assumed 

a near-ground source wellhead source (1m), but the emission actually came from the hatch of a storage tank 

(10m). This exercise showed that, under our field conditions where a variety of infrastructure heights are 

present, GDM output was most sensitive to source height.  Figure S3 shows sensitivity across all parameters 

in combination, focusing on emissions height but showing the combined effects of height, windspeed and 

distance parameterization sensitivity. It will be evident to the reader that even in combination they are 

smaller than the change in output across source heights. Many past studies have not considered the impact 

of emissions stack height, yet as evidenced here, it has a strong influence on GDM output quality.  
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Figure S4. GDM sensitivity to height, distance, and windspeed parameters. The GDM considered CH4 

from a 5 m-high source emitting at 1 m3d-1, under 4m/s wind and Pasquill stability class C, measured at a 

distance of 80 m. Tested heights vary from 1m to 10 m, wind speeds from 3 to 5 ms-1, and distances from 

60 m to 100 m. The colored points represent the estimates for distance = 80 m and wind speed = 4 ms-1. 

The colored lines represent the mean of all the estimates per height, and for all distances and winds. Color 

shows the difference from input in percent, where blue is an under-estimation and red is an over-estimation. 

The grey ribbon displays the minimum and maximum estimates per height for all distances and winds.   

 

As such, we estimated uncertainty for errors in emissions source height parameterization, using 

synthetic sensitivity tests.  Rather than assuming a specific emission height, or a single source, and in the 

absence of a probabilistic indicator of most likely emission source(s) on pad, we used a weighted average 

of the height-based emission rates per pad, with weights determined as the distribution of infrastructure 

heights on the pad. We did this for all triplicate or other passes of an emitting well pad, then derived the 

average and SE for this population of estimates. The mean emission rate should be seen as a prognostic:  

for each emitting well pad, there is a 50% chance of being either lower or higher than the mean, to the 

maximum or minimum rate. Although probabilistically unlikely, the maximum and minimum rates are 

presented in the supporting documentation S2.Volumetric_Data.xlsx. The average SE for height 

parameterization uncertainty differed by development because of differences in infrastructure present on 

pad. In Lloydminster and Peace River where tall tanks were more common, we observed an average mean 

emissions rate SE across all pads of   122 m3day-1, and  56 m3day-1, respectively.  In Medicine Hat where 

infrastructure was primarily closer to the ground and thus the height-related uncertainty was lower, the 

average SE on the mean emissions rate per well pad was 17 m3day-1. Our well pad SE estimates incorporate 

height estimation error, methodological uncertainty, and variability between replicate measurements. It is 

not possible to readily de-convolve the uncertainties associated with each. Since the values presented in 

this section incorporate all sources of uncertainty, and are reasonable given methodological error, we use 

these SE values as our uncertainty estimates for individual well pad emissions source quantification.   

   

c) Other considerations  

 

Traditionally, the GDM is designed for use in flat and obstacle-free environments and is not well 

suited for complex industrial or urban areas. Obstructions can modify the wind field and distort the 

downwind plume. Our three campaigns saw varying topography and land cover. Medicine Hat and 

Lloydminster were dominated by flat terrain, with Peace River having some small elevation changes. Peace 

River and Lloydminster had patches of tree cover depending on the region, and Medicine Hat had no trees 

or obstacles (prairies).   

A CFD study has shown that gaussian dispersion can be used for elevated sources where obstacles 

have little influence on the dispersion ( Mahmoud Bady, 2017). In another paper, authors mention that as a 

plume becomes more distributed at a distance from the source, there is less material to be trapped in the 

wake of an obstacle (Coceal et al., 2014). The impact of obstacles on the GDM largely depends on the ratio 

between the source height and the obstacle height.  

We see two effects from an obstacle on our measurements: 1) We are in the downwash wake of an 

obstacle, in which case emissions rates would likely be overestimated to a degree. We account for these 

instances by filtering out sources in which we are proximal, thus below a hypothetical plume emitted from 
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a tall source, and by not including them in our emissions rate calculations. 2) If we are away from the wake, 

we are underestimating the emissions rate because the measured mole fraction is less than it should be as it 

could be trapped/influenced by an obstacle. For Lloydminster and Peace River, the influence of obstacles 

could be important at a total four sites, where trees were in the likely path of plume transport to be detected 

by our vehicle. In all other forested areas, we were able to sample a well downwind without obstructions 

due to its close proximity to the road. The surrounding clearing that has been made for pad access enabled 

us to pass adjacent to these locations without obstructions, and therefore believe obstructions do not have 

a significant impact on our presented emissions rates.  

 

 

S3.3 Development-wide Emissions Rate Uncertainty 

 

Large uncertainties are inherent with individual well pad emission estimates due to the small 

sample size and large variation between individual passes and height-related estimates, however our 

confidence increases as we consider mean emission rates on a development-wide scale. To account for 

emissions that fall below our MDL, we have re-calculated development-wide means using fitted 

measurement data. Explained below, this process enables us to more readily compare emissions across 

developments, as we apply the same fit assumptions across all developments. 

The distribution of site-level emissions rates in each development can be described using lognormal 

statistics, as previously observed by Zavala-Araiza et al. (2015) and Zavala-Araiza et al. (2018). As 

expected with lognormal distributions, a Lorenz curve shows that a small percent of sites is responsible for 

a large percentage of measured emissions (Figure S4). We generated quantile-quantile plots and used the 

Shapiro-Wilk normality test on our datasets to test this observation, verifying that our sampled distribution 

is accurately described by a lognormal distribution. We derived a log-normal emissions probability density 

function (pdf) that characterizes the well pad emissions measured during this study. By applying a bootstrap 

statistical analysis (Davison and Hinkley, 1997) we drew with replacement (n=10000), a random mean and 

standard deviation from the pdf to determine 95% confidence intervals on the log-normal fit parameters  

and , and on the derived fitted emissions mean (𝑒𝜇+
1

2
𝜎2). The statistical analysis was done in R (R Core 

Team, 2016), using the ‘boot’ package. In Table S1, we compare emissions rates derived from the fitted 

distribution to our original, measured emissions rates. In both cases, 95% confidence intervals were 

determined using a bootstrapping analysis as described above, applied to both the original and the 

lognormal fitted distribution.  This analysis followed a similar approach to that described in Zavala-Araiza 

et al. (2015) and Zavala-Araiza et al. (2018), however due to the lack of an unbiased dataset upon which to 

compare our GDM estimates, the fitted distribution has not been corrected for a high-emitter bias, and thus 

does not consider the effect of the low probability, high emission sites that characterize skewed 

distributions.  
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 Figure S5: Lorenz curve: percent of emissions as a function of percent of sites. 74.8%, 57.6%, and 

72.4% of cumulative emissions in Lloydminster, Peace River, and Medicine Hat respectively originated 

from 20% of emitting sites. 

 

 

Table S1: Results from the bootstrap analysis on the fitted log-normal and original (measured) 

distributions. 95% confidence intervals are shown in the parentheses, values are reported in m3d-1.  

 

 
Fitted Lognormal 

Distribution 

Original 

Distribution 

Development Derived mean  Measured mean 

Lloydminster 271 (180 - 358) 249 (173-325) 

Medicine Hat 35.8 (22.3-48.5) 40.6 (21.8-59.8) 

Peace River 153 (93.0 -210) 158 (97.6-217) 
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S4. Summary gas statistics 

Table S2. Summary statistics of gases measured in this study. Mole fractions are raw, or “as 

recorded,” and ambient background is not subtracted. 
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