1	Supplemental Material
2 3 4	Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO_2 and CH_4 in situ observations in summer 2018
5 6	T. Klausner ^{1*} , M. Mertens ¹ , H. Huntrieser ¹ , M. Galkowski ^{2,3} , G. Kuhlmann ⁴ , R. Baumann ¹ , A. Fiehn ¹ , P. Jöckel ¹ , M. Pühl ¹ and A. Roiger ¹
7 8	¹ Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
9 10 11	 ²Max-Planck-Institut f ür Biogeochemie (MPI), Biogeochemische Systeme (BGC), Jena, Germany ³AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
12 13	⁴ Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
14	*Corresponding author: theresa.klausner@dlr.de
15	ADD DOI here after acceptance of the manuscript
16	March 10, 2020
17 18 19	List of Contents Figure S1. Time series of CO ₂ , CH ₄ and flight altitude for five research flights during July 2018.
20 21 22	Figure S2. Vertical profiles of the upward spiral at Tempelhofer Feld. The PBL depth (dashed black line) was determined from virtual potential temperature, static temperature and relative humidity.
23 24 25 26	Figure S3. Aerosol lidar measurements at Leipzig. The temporal evolution of the range- corrected signal at 1064 nm is shown. Available at http://polly.tropos.de/?p=lidarzeit&Ort=1&Jahr=2018. Accessed October 04, 2019. Further information can be found in Engelmann et al. (2016) and Baars et al. (2016).
27 28	Figure S4. Time series of forecasted and actual wind direction and wind speed. The whole campaing period from July 8 th to 26 th is shown.

- 29 Figure S5. Correlations of wind direction and wind speed between airborne measurement
- 30 data and ECMWF forecast data. Correlation coefficients are abbreviated with Pr.
- Figure S6. Biogenic CO₂ mixing ratios up- and downwind of Berlin on July 20th.
- 32 Figure S7. Ascents of a captive balloon system located at Tempelhofer Feld on July 24th.
- 33 Wind measurements were carried out by the DWD (R. Becker, P. Stanislawsky, M. Koßmann) in
- 34 the framework of the $[UC]^2$ project.
- 35 **Figure S8. Backward trajectory calculations for July 24th.** Trajectories were started at 14:30
- 36 UTC from the downwind flight track backwards in time for 6 hours. Colour coded is the height of37 the trajectory according to its relative position.
- **Figure S9. Population density for Berlin and the state Brandenburg from 2017.** The yellow
- 39 to red colours indicate the inhabitants per km^2 , the blue dots show numbers for total population in
- 40 each municipality. The Berlin city boundary (black) was added as well as latitude and longitude
- 41 labels. Adapted after Strukturatlas Land Brandenburg (2017).
- Figure S10. Curtain of simulated c-CH₄ and c-CO₂ on July 20th. The third crossing of the Berlin plume at ~1600 m altitude is shown from ~13:20 to ~13:35 UTC.
- Figure S11. Time-series of the simulated $c-CO_2$ plume on July 24th. Shown are snapshots at (a) 14 UTC, which is identical to Fig. 10b and (b) at 16 UTC to indicate, that the plume moves
- towards the west during the afternoon.
- 47 Text S1. Calibration procedure and measurement uncertainty
- 48 Text S2. Greenhouse gas time series and altitude profiles
- 49 Text S3. ECMWF forecast data and wind measurement agreement
- 50 Text S4. Biogenic CO₂ flux
- 51 Text S5. Wind situation on July 24th
- 52 Text S6. Trajectories on July 24th
- 53 Text S7. Berlin and its surrounding area
- 54 Text S8. Simulated vertical GHG distribution within the PBL

Figure S1. Time series of CO₂, CH₄ and flight altitude for five research flights during July
2018.

64 Figure S2. Vertical profiles of the upward spiral at Tempelhofer Feld. The PBL depth

65 (dashed black line) was determined from virtual potential temperature, static temperature and

66 relative humidity.

67

68 Figure S3. Aerosol lidar measurements at Leipzig. The temporal evolution of the range-

- 69 corrected signal at 1064 nm is shown. Available at
- 70 http://polly.tropos.de/?p=lidarzeit&Ort=1&Jahr=2018. Accessed October 04, 2019. Further
- information can be found in Engelmann et al. (2016) and Baars et al. (2016).

73 Figure S4. Time series of forecasted and actual wind direction and wind speed. The whole

74 campaign period from .July 8^{th} to 26^{th} is shown.

76 Figure S5. Correlations of wind direction and wind speed between airborne measurement

79 Figure S6. Biogenic CO₂ mixing ratios up- and downwind of Berlin on July 20th.

81 Figure S7. Ascents of a captive balloon system located at Tempelhofer Feld on July 24th.

82 Wind measurements were carried out by the DWD (R. Becker, P. Stanislawsky, M. Koßmann) in

83 the framework of the $[UC]^2$ project.

80

84
 85
 Figure S8. Backward trajectory calculations for July 24th. Trajectories were started at 14:30

86 UTC from the downwind flight track backwards in time for 6 hours. Colour coded is the height of 87 the traineterm according to its relative position

87 the trajectory according to its relative position.

Figure S9. Population density for Berlin and the state Brandenburg from 2017. The yellow
 to red colours indicate the inhabitants per km², the blue dots show numbers for total population in

each municipality. The Berlin city boundary (black) was added as well as latitude and longitude

92 labels. Adapted after Strukturatlas Land Brandenburg (2017).

94 Figure S10. Curtain of simulated c-CH₄ and c-CO₂ on July 20th. The third crossing of the

95 Berlin plume at \sim 1600 m altitude is shown from \sim 13:20 to \sim 13:35 UTC.

97 Figure S11. Time-series of the simulated c-CO₂ plume on July 24th. Shown are snapshots at

98 (a) 14 UTC, which is identical to Fig. 10b and (b) at 16 UTC to indicate, that the plume moves

99 towards the west during the afternoon.

100

101 Text

102 Text S1. Calibration procedure and measurement uncertainty

103 The Picarro analyser was frequently calibrated with four multi gas cylinders from Air Liquide 104 (AL) containing the following CO₂ and CH₄ mixing ratios [ppm/ppb] in synthetic air: 777/1.795, 105 428.8/2.010, 411.8/1.824 and 369.2/1.607. The manufacturer states an uncertainty of ± 2 %. The 106 highest CO₂ mixing ratio of 777 ppm was however not used for the analysis as the operating 107 range of the instrument is typically between 300 and 500 ppm, as stated in the Picarro Certificate 108 of Compliance which comes with the purchase of the instrument. Prior and after the campaign the 109 AL standards were calibrated against two NOAA multi gas standards (#CB11542 and 110 #CB11361). Assuming the primary standards are the truth, the AL uncertainty of 2 % could 111 therefore be reduced to <0.1 % for CO₂ and <0.4 % for CH₄. The total measurement uncertainty 112 is determined to better than 0.2 ppm for CO₂ and 1.1 ppb for CH₄ based on the summation of the 113 following sources of uncertainty in guadrature: (1) measurement precision: 1σ of 180 s mean of a 114 10 min calibration sequence (2) uncertainty associated with the water vapour correction: taken 115 from Rella (2010) with a maximum measured water vapour mixing ratio of 2.2 % (3) drift of the 116 instrument with time: taken from flight analyser data sheet (Picarro, 2009) with a maximum flight 117 time of 2.5 hours (4) drift of the instrument with temperature: taken from the Picarro Certificate 118 of Compliance with a maximum measured temperature difference of 15 °C (5) scale reproducibility of the primary standards: given is the 68th percentile of the absolute values of the 119 120 differences among all the pairs divided by the square root of two (6) scale reproducibility of the 121 secondary standards.

122 Text S2. Greenhouse gas time series and altitude profiles

Time series for CO_2 (red), CH_4 (brown) and flight altitude (black) of each of the five performed research flights are presented in Fig. S1, where the GHG mixing ratios from the Picarro analyser are corrected according to the delay time of the instrument (~15 s). Altitude profiles of virtual potential temperature (θ_v , red), static temperature (ST, black), and relative humidity (RH, blue) are shown in Fig. S2. The PBL depth (dashed black line in Fig. S2) was determined considering the average of three different approaches (1) level of maximum gradient in virtual potential temperature ($d\theta_v/dz$), following Dai et al. (2014) (2) base level of an elevated temperature (static

temperature) inversion and (3) level of minimum vertical gradient of relative humidity (dRH/dz),

- both following Seidel et al. (2010). PBL depths were cross verified through the comparison with
- aerosol lidar measurements at Leipzig, Germany, performed within EARLINET (European

- 133 Aerosol Research Lidar Network, Pappalardo et al., 2014; see Fig. S3). PBL heights retrieved
- 134 from the ECMWF forecast data (averaged within 50.85 to 50.75 °N and 12.45 to 14.2 °E) were
- 135 found to agree within ~250 m compared to the PBL height deduced from the airborne
- 136 measurements.

137 Text S3. ECMWF forecast data and wind measurement agreement

138 We compare our airborne wind measurements (FDLR = aircraft call sign) to ECMWF forecast 139 data, which are used as input for HYSPLIT trajectory calculations. To capture the characteristics 140 of the whole PBL we consider three different pressure levels: 750, 850 and 950 hPa. Figure S4 presents the time series of ECMWF wind direction (wa, upper panel) and ECMWF wind speed 141 (ws, lower panel) within the whole campaign period from 16th of July at 8 UTC to 26th of July at 142 23 UTC. The three different pressure levels are expressed as solid lines. Wind directions ranged 143 from 270° to 100° with wind speeds from 1 to 15 m s⁻¹. Wind measurements on our flight days 144 145 are indicated by crosses. Error bars are the deviation of the wind speed and wind direction as we 146 calculated an average of the whole flight at pressure levels within ± 5 hPa of the given pressure 147 height. Figure S5 shows the correlation between measured wind direction and wind speed on our flight days with ECMWF data. As the overall correlation (R = 0.95 to 0.98) is excellent, we take 148 149 the ECWMF data as reliable fur further analysis. Note that the wind direction markers in Fig. S5 are sized according to the wind speed. Generally better agreement in wind direction was observed 150 151 when wind speeds were higher.

152 Text S4. Biogenic CO₂ flux

153 Figure S6 shows the measured (solid lines) and simulated (dashed lines) CO₂ mixing ratios

154 downwind of Berlin. The dashed lines represent the predicted result from WRF-GHG, simulating

the biospheric CO₂ contribution using an online VPRM model driven by MODIS indices

- 156 (Mahadevan et al., 2008). Here we analyse the signals predicted by the biosphere if only biogenic
- 157 uptake was considered (i.e. assuming complete absence of anthropogenic sources). The mixing
- ratios were derived from the simulation by replacing the upwind-simulated mixing ratios of the
- 159 WRF base reference by the actual upwind CO₂ measurements. Next, the simulated downwind
- 160 mixing ratios were corrected by that estimated bias. Therefore, the upwind measured and
- simulated CO₂ mixing ratios are equal by definition and only depicted by the solid light purple
- 162 line. Variation in the predicted dashed concentrations corresponds to changes of biospheric-only
- 163 CO₂ mixing ratios at respective downwind measurement locations. At the edges of our flight

track, which we assume represent the atmospheric background, the model matches the measured
 CO₂ pattern quite well, which leads us to believe that its predictions are accurate.

166 As can be seen, the influence of the biosphere between upwind and downwind legs of the flight is 167 predicted to be small and well within the variability of the measurements. On top of that, the 168 change of the modeled signal inside the constrained area is variable with both altitude and 169 distance (as defined on x-axis), reflecting the influence of vertical transport dynamics inside the 170 PBL superimposed on regional-scale variability of the predicted tracer fields. For the lowest leg 171 the strongest uptake of CO_2 is estimated, however the surface-driven influence of biosphere gets 172 less intense towards the higher flight altitudes. In turn, regional scale variability causes the 173 relation between upwind and downwind simulations to be negative (distances between approx. 0

174 km to 20 km) or positive (-20 km to -10 km), depending on the horizontal location.

175 This variability in horizontal and vertical direction makes it difficult to accurately quantify the 176 overall biogenic influence without adding an extra layer of complexity to the applied method. In 177 fact, even if it were to be applied, we believe that the correction of the estimated anthropogenic 178 flux would be very minor, as the difference in the mixing ratios between the upwind leg and the 179 simulated downwind legs within the city plume is usually not larger than 0.5 ppm. The estimated 180 enhancement from the city of ~4 ppm (which corresponds to an anthropogenic flux of 1.39 ± 0.76 181 t CO_2 s⁻¹) would be only slightly altered if a vertically-weighted mean of simulated concentrations 182 was used as background instead of upwind measurement. On top of that, the uncertainty of such 183 estimation would be difficult to quantify without a detailed analysis of the modeled output.

184 It should also be noted that our estimates of the biogenic signals are potentially offset over the

185 sections of the transects immediately downwind of the Berlin urban area. This is caused by

186 misrepresentation of the urban biosphere in VPRM, as the driving MODIS indices cannot

187 accurately discern the urban biosphere from other land use types within the city boundary due to

188 insufficient spatial coverage. To properly account for the biogenic CO₂ signal, modifications to

the VPRM system would be required, potentially in a manner similar to the one adopted by

190 Hardimann et al. (2017).

191 Therefore, based on the available data, we deem it unnecessary to correct for the biogenic

192 influence explicitly, and conservatively estimate that the anthropogenic emissions would not be

enlarged by more than ~ 12 % if the biogenic uptake were to be considered. This number,

194 corresponding to the total CO₂ biogenic flux in the constrained area, is conservative, and well

195 within the overall uncertainty of calculated anthropogenic flux.

- 196 The modeling system used in this study was the same that was used for simulations preformed in
- 197 the scope of the CoMet 1.0 (Carbon Dioxide and Methane Mission). The setup consisted of a
- 198 WRF-Chem v3.9.1.1. model (Skamarock et al, 2008) run with the GHG option enabled for a
- 199 European-wide L60 10 km x 10 km domain with a nested L60 2 km x 2 km domain centered over
- 200 Berlin. Meteorology was driven by the ERA5 product from Copernicus Climate Change Service
- 201 (C3S, 2017). More details about the system setup can be found in Galkowski et al. (in prep).

202 Text S5. Wind situation on July 24th

- 203 Calm winds during the night and in the morning were recorded by seven ground based
- 204 measurement stations within and around Berlin (http://wind.met.fu-
- 205 berlin.de/wind/archiv/form.php), however the wind speed increased dependent on the location
- between 6 and 9 UTC. This rise of low level winds (<400 m) in the morning is further in
- agreement with five ascents of a captive balloon system located at Tempelhofer Feld.
- 208 Measurements were performed by the DWD within the [UC]² project, the data were processed
- and provided by R. Becker, P. Stanislawsky and M. Koßmann. Figure S7 shows that the average
- wind speed at 08:30 UTC was only 2.2 ± 0.7 m s⁻¹, however it was strongly rising to 3.9 ± 0.7 m
- s⁻¹ already at 9:39 UTC. Additional balloon ascents afterwards (at 10:28, 11:44 and 13:12 UTC)
- show similar and relatively consistent wind speeds $(3.3 \pm 0.9, 3.8 \pm 0.7 \text{ and } 4.3 \pm 0.6 \text{ m s}^{-1})$,
- respectively). Our downwind wall is approximately 30 to 40 km downwind of the city centre,
- hence with an averaged measured wind speed during the flight of 3.6 m s^{-1} , the air masses would
- 215 have needed three hours to travel from the city centre towards our flight path. Thus it is uncertain
- 216 whether the accumulation due to calm winds was already swiped away or not.

217 Text S6. Trajectories on July 24th

218 Figure S8 displays backward trajectory calculations being started from the three transects within

the PBL at 14:30 UTC. Colour coded is hereby the height of the trajectory. Note that all

220 calculations reach 6 h backward in time, thus the accumulation of air masses in the western part

- of the plume is visible (the right part of the trajectories is distinguishable from the left part due to
- their plume age), which is consistent with the observed change in GHG mixing ratios as depicted
- in Fig. 10a of the main paper. Further the trajectories do not exhibit a similar picture in the
- different heights within the PBL (500, 800 and 1300 m transect), which is however contradictory
- to the uniformly observed GHG mixing ratios at all heights (see also Fig. 10a). Thus, assessing
- the uncertainty of the background, where we would use the upwind CO_2 and CH_4 measurement
- data, is not feasible.

228 Text S7. Berlin and its surrounding area

- 229 Figure S9 shows the population density for Berlin and the surrounding state Brandenburg from
- 230 2017. The caption is only available in German, however the yellow to red colours indicate the
- 231 inhabitants per km^2 and the blue dots show numbers for total population in each municipality.
- 232 The Berlin city boundary (black) was added as well as latitude and longitude labels for better
- 233 orientation. It is obvious, that Berlin has a higher population density compared to its surrounding
- $(4055 \text{ vs. } 84 \text{ inhabitants per km}^2)$ and seems therefore to be relatively isolated. Northwest of the
- 235 city (i.e. upstream of the flight track on July 20th) two municipalities (Neuruppin and Zehdenik)
- are located, but only with a population density of 50 to 100 inhabitants per km^2 . To the west and
- east of these small cities large nature parks are located (Naturpark Westhavelland,
- 238 Biosphärenreservat Schorfheide-Chorin).

239 Text S8. Simulated vertical GHG distribution within the PBL

- 240 The PBL on July 20^{th} extends from the surface up to ~2700 m, as indicated by meteorological
- 241 measurements. The part of the plume between \sim 300 and \sim 1600 m was sampled by the aircraft;
- 242 however the lowest ~300 m were not accessible due to flight restrictions over the city. To still
- account for the distribution of GHG from the surface towards the top of the PBL we analyse the
- vertical plume structure using the MECO(n) model. Figure S10 shows for the third crossing of the
- Berlin plume at ~ 1600 m the simulated c-CH₄ and c-CO₂ mixing ratios in the vertical. Between
- the surface and the top of the PBL the plume is not lofted or depicts any vertical structures.
- 247 Therefore our assumption of a well-mixed PBL is valid.

248

249 References

- 250 Baars, H. et al. 2016. An overview of the first decade of PollyNET: an emerging network of
- automated Raman-polarization lidars for continuous aerosol profiling. *Atmos Chem Phys* 16:
- 252 5111–5137, DOI: 10.5194/acp-16-5111-2016.
- 253 C3S Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF atmospheric
- reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS),
- 255 https://cds.climate.copernicus.eu/cdsapp#!/home, 2017.
- 256 Dai, C, Wang, Q, Kalogiros, JA, Lenschow, DH, Gao, Z, Zhou, M. 2014. Determining Boundary-
- 257 Layer Height from Aircraft Measurements. *Bound-Lay Meteorol* **152(3):** 277–302, DOI:
- 258 10.1007/s10546-014-9929-z.
- 259 Engelmann, R, Kanitz, T, Baars, H, Heese, B, Althausen, D, Skupin, A, Wandinger, U,
- 260 Komppula, M, Stachlewska, IS, Amiridis, V, Marinou, E, Mattis, I, Linné, H, and Ansmann, A.
- 261 2016. The automated multiwavelength Raman polarization and water-vapor lidar Polly^{XT}: the
- 262 neXT generation. *Atmos Meas Tech* **9**: 1767–1784, DOI: 10.5194/amt-9-1767-2016.
- 263 Hardiman, BS, Wang, JA, Hutyra, LR, Gately, CK, Getson, JM, Friedl, MA. 2017. Accounting
- 264 for urban biogenic fluxes in regional carbon budgets. *The Science of the total environment* **592**:
- 265 366-372, DOI: 10.1016/j.scitotenv.2017.03.028.
- 266 Mahadevan, P, Wofsy, SC, Matross, DM, Xiao, X, Dunn, AL, Lin, JC, Gerbig, C, Munger, JW,
- 267 Chow, VY, Gottlieb, EW. 2008. A satellite-based biosphere parameterization for net ecosystem
- 268 CO₂ exchange: Vegetation Photosynthesis and Respiration Model (VPRM). *Global Biogeochem*
- 269 *Cy* **22(2)**, DOI: 10.1029/2006GB002735.
- 270 Pappalardo, G, Amodeo, A, Apituley, A, Comeron, A, Freudenthaler, V, Linné, H, Ansmann, A,
- 271 Bösenberg, J, D'Amico, G, Mattis, I, Mona, L, Wandinger, U, Amiridis, V, Alados-Arboledas, L,
- 272 Nicolae, D, Wiegner, M. 2014. EARLINET: towards an advanced sustainable European aerosol
- 273 lidar network. Atmos Meas Tech 7: 2389–2409, DOI: 10.5194/amt-7-2389-2014.
- 274 Picarro, 2009. Picarro G1301-m CO₂/CH₄/H₂O Flight Analyzer. Available at
- 275 https://www.picarro.com/assets/docs/CO2_CH4_flightanalyzer_datasheet.pdf. Accessed October
- 01, 2019.
- 277 Rella, C. Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro
- 278 G1301 Carbon Dioxide / Methane / Water Vapor Gas Analyzer, 2010. Available at

- 279 https://www.picarro.com/assets/docs/White_Paper_G1301_Water_Vapor_Correction.pdf.
- 280 Accessed October 01, 2019.
- 281 Seidel, DJ, Ao, CO, Li, K. 2010. Estimating climatological planetary boundary layer heights from
- radiosonde observations: Comparison of methods and uncertainty analysis. *J Geophys Res*
- 283 **115(D16):** 123, DOI: 10.1029/2009JD013680.
- 284 Skamarock, WC, Klemp, JB, Dudhia, J, Gill, DO, Barker, DM, Duda, MG, Huang, X-Y, Wang,
- 285 W, Powers, JG. 2008. A Description of the Advanced Research WRF Version 3. NCAR Tech.
- 286 Note NCAR/TN-475+STR, 113 pp. DOI: 10.5065/D68S4MVH.
- 287 Strukturatlas Land Brandenburg (2017), plot retrieved from an interactive tool on
- 288 http://strukturatlas.brandenburg.de/. Accessed January 22, 2020.
- 289 Acknowledgements
- 290 Authors acknowledge data provision by the PollyNET team in the frame of ACTRIS (ACTRIS-2
- under grant agreement no. 654109 from the European Union's Horizon 2020 research and
- 292 innovation programme).